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A full-wave surface integral equation method is used for modeling coils in a wide frequency range. This is of high importance in,
for example, the analysis of resonant wireless power transfer (WPT) links. Previous contributions of the field are extended herein by
incorporating a 2D model (using finite elements here) of the current distribution within the wire. This yields a numerical approximation
of the non-local impedance boundary condition on the wire surface that holds true at any frequency. The 2D eddy-current model
has to be evaluated only twice at one frequency, which makes the scheme computationally efficient. The method accurately predicts
the ohmic loss as shown by an example.
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I. INTRODUCTION

THE ELECTROMAGNETIC (EM) modeling of coils un-

der ac excitation is still a challenging problem in spite

of the several attempts presented in the literature, especially

in the case when the joule loss in the wire is to be accurately

calculated. The main difficulty lies in the large aspect ratio

of the coil size and wire diameter. Furthermore, one has

an eddy-current problem in the conductor whereas a full-

wave model might apply in the surrounding dielectric. Such

problems typically occur in the analysis of resonant wireless

power transfer (WPT) links.

Integral equation (IE) methods have shown a good perfor-

mance in coil modeling [1]. A full-wave surface IE method

with special attention to WPT modeling has been presented

in [2], using the Leontovich surface impedance boundary

condition (SIBC) [3]. More sophisticated SIBC approximations

are known, e.g., the analytic approach of [4]. In the present

contribution, the formulation in [2] is extended by a novel

approximation of the SIBC based on a 2D analysis of the

eddy-current distribution over the wire cross section. A 2D

finite element method (FEM) is used here, but other numerical

techniques could also be applied.

II. THE INTEGRO-DIFFERENTIAL EQUATION MODEL

Let us consider a coil wire made of homogeneous, non-

magnetic conductor with electric conductivity κ, that stands
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Fig. 1. Local coordinate system and the 2D model domain Ω of the wire

cross-section with the boundary Γ. t̂, n̂ and ζ̂ = t̂ × n̂ are the tangential,
normal and longitudinal unit vectors, respectively. h is the largest linear extent
of the wire cross-section; F refers to the wire surface.

in a homogeneous dielectric medium with permittivity ε. The

wire can form a loop or coil with arbitrary shape. Let the radius

of curvature be much larger than the largest linear extent of the

wire cross-section, but no constraint is set to the gap between

adjacent turns. A section of the wire is shown in Fig. 1 along

with a local Cartesian coordinate system {ξ, ψ, ζ}. We consider

a time-harmonic excitation with angular frequency ω.

One assumes a slow variation of the volume current density

J = κE along the wire (i.e., in the local ζ direction) in the

sense that ∂/∂ζ can be neglected when studying the variation

over the cross-section. Thus the EM field in the wire obeys

a partial differential equation (PDE) over the 2D domain Ω
(Fig. 1). The key idea of the proposed method is to find the

particular solution of this PDE with respect to the boundary

condition (BC) on the wire surface. The latter links the eddy-

current PDE within the conductor to the IE model being valid

in the surrounding dielectric. The EM field can be described

in terms of the longitudinal components of the electric Eζ and

magnetic Hζ fields at any arbitrary cross-section of the wire:

a) By assuming that Hζ = 0 (transverse magnetic, TM case),

one has the Helmholtz’s equation [5] for Eζ as

∇2Eζ(ξ, ψ)− γ2cE
ζ(ξ, ψ) = 0 on Ω (1)

with the propagation constant γc =
√
jωµ0κ. In this case,

the tangential component of the magnetic field imposes a

Neumann boundary condition for Eζ on Γ:

∂Eζ

∂n

∣

∣

∣

Γ

= −jωµ0H
t
∣

∣

∣

Γ

. (2)

b) By assuming that Eζ = 0 (transverse electric, TE case),

the same PDE is written for Hζ :

∇2Hζ(ξ, ψ)− γ2cH
ζ(ξ, ψ) = 0 on Ω, (3)

together with a Dirichlet boundary condition for Hζ on

Γ. The tangential electric field on the surface is then
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In the cases of a) and b), one has the non-local SIBC expres-

sions
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The operators Zζt
S and Ztζ

S represent a 2D eddy-current

boundary value problem and they are evaluated by the FEM.

Note that only 2 FEM simulations are needed at one frequency.

In the dielectric, the A-Φ formulation is used, i.e., the

magnetic vector and electric scalar potentials are written as

A(r) = µ0

∫

F

g(r, r′)JS(r
′)dF ′

Φ(r) =
1

ε0

∫

F

g(r, r′)σ(r′)dF ′

(6)

with g(r, r′) = exp(−jω
√
µ0ε0|r− r

′|)/(4π|r− r
′|) being the

free-space Green’s function [5], the sources (the surface current

density JS and surface charge density σ) are defined on the

wire surface F . The potentials provide the electric field as

E = −∇Φ− jωA. (7)

The sources satisfy the charge conservation law

0 = ∇ · JS + jωσ. (8)

Note that the current is represented as a surface current density

JS in (6) and (8), whereas a volume current density J is used in

the eddy-current model in the wire. JS is approximately linked

to J via an integration in the direction normal to the surface.

JS can be shown to have a direct relation with the tangential

components of the magnetic field on the surface [5]:
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S . (9)

By using (7) and (9), one finally sees that the integral

equations (6), the charge conservation law (8) and the SIBCs

(5) together form a coupled system of integro-differential

equations that can be solved for a given excitation, e.g., an

imposed current at the wire terminals.

III. DISCRETIZATION FOR A TEST CASE

A circular loop and a helical coil are made of a cylindrical

copper wire as shown in Fig. 2, with parameters κ = 57MS/m,

a = 0.89mm, d = 3a, h = 12a and R = 111mm.

In the integro-differential equation system (5)-(9) JS and σ
are discretized by using piece-wise constant basis functions de-

fined by a rectangular grid on the wire surface F with grid-lines

parallel with the unit vectors ζ̂ and t̂. The cross-section of the

wire is thus approximated by a regular m-sided polygon. The

Eζ , Et and Hζ , Ht components on F are also approximated

as piece-wise constant, i.e., the operators in (5) take the form

d h
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Fig. 2. The test configuration
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Fig. 3. Loop impedance at low (δ ' a) and high frequencies. “MoM -
0th” refers to the integral equation scheme with Leontovich SIBC, “MoM -
FEM” stands for the proposed method, whereas “analytic” uses the closed-
form solution for a straight wire in terms of Bessel functions [5]. “MoM -
0th” and “MoM - FEM” tend to be equivalent with increasing frequency.

of m-by-m matrices. The loop impedance is calculated with

m = 8 and 21 segments per turn along ζ, i.e., with 840 surface

elements in total. Finally, the method of moments is used with

point collocation to obtain a system of algebraic equations. The

results agree well with the expectations as shown in Fig. 3.

IV. CONCLUSION

By means of a 2D FEM model of the volume current density

in the wire, a surface IE formulation is extended by a non-

local SIBC that is not limited to the small skin-depth case and

correctly models proximity effects. More details on the method

along with a thorough validation will be given in the full paper.
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